- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Yiwen (2)
-
Bozec, Alexandra (1)
-
Chassignet, Eric P. (1)
-
Cheng, Stephen Z. (1)
-
Cui, Honggang (1)
-
Fox-Kemper, Baylor (1)
-
Iovino, Doroteaciro (1)
-
Kiss, Andrew E. (1)
-
Le Sommer, Julien (1)
-
Li, Tao (1)
-
Lin, Pengfei (1)
-
Lique, Camille (1)
-
Liu, Hailong (1)
-
Liu, Tianbo (1)
-
Liu, Yuchu (1)
-
Luo, Jiancheng (1)
-
McC. Hogg, Andy (1)
-
Serazin, Guillaume (1)
-
Shan, Wenpeng (1)
-
Sidorenko, Dmitry (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. The ocean mixed layer is the interface between the ocean interior and the atmosphere or sea ice and plays a key role in climate variability. It isthus critical that numerical models used in climate studies are capable of a good representation of the mixed layer, especially its depth. Here weevaluate the mixed-layer depth (MLD) in six pairs of non-eddying (1∘ grid spacing) and eddy-rich (up to 1/16∘) models from theOcean Model Intercomparison Project (OMIP), forced by a common atmospheric state. For model evaluation, we use an updated MLD dataset computed fromobservations using the OMIP protocol (a constant density threshold). In winter, low-resolution models exhibit large biases in the deep-waterformation regions. These biases are reduced in eddy-rich models but not uniformly across models and regions. The improvement is most noticeable inthe mode-water formation regions of the Northern Hemisphere. Results in the Southern Ocean are more contrasted, with biases of either sign remainingat high resolution. In eddy-rich models, mesoscale eddies control the spatial variability in MLD in winter. Contrary to a hypothesis that thedeepening of the mixed layer in anticyclones would make the MLD larger globally, eddy-rich models tend to have a shallower mixed layer at mostlatitudes than coarser models do. In addition, our study highlights the sensitivity of the MLD computation to the choice of a reference level andthe spatio-temporal sampling, which motivates new recommendations for MLD computation in future model intercomparison projects.more » « less
-
Zhang, Wei; Shan, Wenpeng; Zhang, Shuailin; Liu, Yuchu; Su, Hao; Luo, Jiancheng; Xia, Yanfeng; Li, Tao; Wesdemiotis, Chrys; Liu, Tianbo; et al (, Chemical Communications)We have designed and synthesized a pair of sequence isomeric giant surfactants based on polystyrene (PS) and polyhedral oligomeric silsesquioxane (POSS) nanoparticles. Although these two macromolecules possess identical compositions as “sequence isomers”, the distinctly arranged POSS sequences lead to different molecular packing conformations, and further induce distinguished self-assembly behaviors in DMF/water solutions.more » « less
An official website of the United States government
